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Abstract 

Travelling waves crossing the nervous networks at mesoscopic/macroscopic scales 
have been correlated with different brain functions, from long-term memory to visual 
stimuli. Here we investigate a feasible relationship between wave 
generation/propagation in recurrent nervous networks and a physical/chemical 
model, namely the Belousov–Zhabotinsky reaction (BZ). Since BZ’s nonlinear, chaotic 
chemical process generates concentric/intersecting waves that closely resemble the 
diffusive nonlinear/chaotic oscillatory patterns crossing the nervous tissue, we aimed 
to investigate whether wave propagation of brain oscillations could be described in 
terms of BZ features. We compared experimentally detected oscillations during the 
spontaneous activity of the brain with BZ-like concentric waves simulated by a 

recently introduced artificial network.  The observed overlap and agreement between 
simulated and measured oscillatory patterns suggests that changes in cortical areas’ 
neural activity might be described in terms of a recognizable diffusion pattern.  We 
describe biological plausibility, benefits and limits of our approach and discuss the 
relationship among BZ-like networks, Pandemonium-like architectures and the 
spontaneous activity of the brain.   
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Introduction 

Travelling waves of neural activity, spontaneously generated by 
intrinsic circuits or evoked by external stimuli, cross the brain at 
single-area and whole-brain scales (Muller et al., 2018; Zhang et al., 
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2018).  These spatiotemporal cortical patterns have been correlated 
with a variety of mental functions, from long-term memory 
consolidation to processing of visual stimuli (Figure 1). It has been 
hypothesized that synchronous occurrence of neural oscillations in 
different neural populations might assist information transfer among 
these populations (Akam and Kullmann, 2010). A broad 
computational and mathematical literature on travelling waves in 
neural networks has been produced, focusing on theoretical 
mechanisms for wave spreading. Here we ask whether wave generation 
and propagation in recurrent nervous networks might be correlated 
with extant physical/chemical models. A chemical system termed 
Belousov–Zhabotinsky reaction (BZ), though an incomplete analogy to 
the cortical activity, provides a suggestive template for waves radiating 

from brain sub-areas. BZ describes an unusual, nonlinear chemical 
oscillator: in presence of bromine and an acid, concentric circles are 
effortlessly and incessantly produced in a Petri dish, giving rise to 
simultaneous, intersecting wave fronts which intermingle and/or 
reciprocally annihilate (Figure 2A).  BZ models of noise-induced order 
have been used for chemical computations describing far from 
equilibrium nonlinear dynamics and chaotic evolution. BZ-like 
computational models rely on geometrically constrained excitable 
chemical mediums which make use of changes in reagents 
concentrations to transmit information. This approach has been 
proven useful in different contexts such as, e.g., image processing, 
Voronoi diagram, logical computations.  Zhang et al. (2012) designed 
circuits that reproduce the typical oscillatory patterns of BZ. Their 
circuits consist of planar, geometrically constrained, binary adder 
chemical devices that perform not just two-bit, but also multi-bit 
logical computations.  Sun and Zhao (2013) and Guo et al. (2014) 
further described how one-bit decoders can be extended through 
cascade methods to design two-bit, three-bit, or higher bit binary 
decoders.  

BZ-like travelling waves can be used to investigate physical 
and/or biological phenomena: for example, they mimic the cardiac 
electrical waves and resemble the oscillations of certain bacterial 
colonies (Cincotti et al., 2019).  Here we tackle the BZ issue from the 

standpoint of the brain cortical activity: does a correlation exist 
between the configurations of BZ oscillations and brain waves?  The 
answer could be positive, if we consider that the vibrations inside a BZ 
medium create a pattern of simultaneous and/or successive 
concentric waves across the surface that closely resemble the 
travelling waves produced in the cortex by the impact of afferent action 
potentials.  Instead of precise zero-lag synchrony, a range of flexible 
phase relationships might produce waves of various shapes including 
plane, radial and spiral waves, and complex spatiotemporal patterns.   
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Figure 1. Examples of cortical travelling waves.  Figure 1A. The slow oscillations of 
deep non-rapid-eye-movement sleep are reported in terms of a travelling wave moving 
globally from anterior to posterior regions (modified from Massimini et al. 2004).  
Figure 1B.  A model for stimulus-evoked responses in the visual cortex.  Within the 
response zone, the activity pattern might take two main forms: either stationary 

bumps of activity (not shown here) or travelling waves (illustrated in the picture). 
Modified from Muller et al. (2018).  Figure 1C.  Schematic model for wave generation 
in topographic networks of neurons with local random connections. Spheres represent 
neurons whose membrane potential is indicated by colour.  In waking states, cortical 
networks with strong background display local stimulation that elicits waves weakly 
entraining neuronal spiking (Muller et al., 2018).  Figure 1D.  Interaction between 
sparse, weakly interacting cortical waves. It has been hypothesized that such 
oscillations might generate a symmetric global wave field when passing through each 
other.  Modified from Muller et al. (2018) and Perrard et al. (2016).   
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Brain activity has another common ground with BZ: both display 
oscillations characterized by chaotic features and self-organizing 
activity under the influence of specific stimuli (Fraiman and Chialvo, 
2012; Zare and Grigolini, 2013; Qu et al., 2014; Tozzi et al., 2017); 
both exhibit “excitability”, i.e., the sudden occurrence of patterns, 
such as the neural avalanches, emerging in an apparently quiescent 
medium (Tyukin et al., 2019). Starting from these premises, we tested 
whether BZ-like mechanisms might underlie the oscillatory behavior 
of fMRI BOLD activation during spontaneous activity of the brain. To 
pursue our goal, we introduced a novel computational model of 
nervous activity, i.e., a BZ-like circuit that mimics the oscillations 
arising from single cortical subareas and propagating (non-
homogeneously and non-ergodically) towards different cortical 
locations. We compared the simulated waves produced by our BZ 
network with available real neurodata and found that the propagation 
of nervous oscillations in the brain matches the propagation of the 
simulated waves generated by of our BZ-like circuit.     

 

Materials and Methods 

Our aim was to compare innovative artificial circuits simulating the 
typical BZ waves with the real patterns of oscillations extracted from 
fMRI movies of the spontaneous activity of the brain.   

 

Previous circuits based on Belousov-Zhabotinsky reaction. In 
previous studies, BZ has been described in terms of circuits that 
reproduce the typical front waves and superimposing oscillatory 
patterns of this unusual chemical reaction (Figure 2A).  For further 
details and the master equations, see Zhang et al. (2012); Sun and 
Zhao (2013); Guo et al. (2014).  The basic unit of the circuit, termed 
binary adder unit (BAU), consists of simple straight-line boundaries.  
BAU was implemented with a number of tools, such as unidirectional 
transmission, T-shaped and cross-propagation structures (Figures 
2B-D).  Due to its geometrically constrained structure, BAU performs 
the addition of binary information without the need of ruling clocks or 

adjustments in parameters. Methodologies borrowed by adders 
building in digital circuits permits to couple single-bit BAUs and 
produce two-bit binary adders and, as the number of bits increases, 
more complex multi-bit binary decoders.  The latter can be designed 
via nesting and cascade methods that link n-bit decoders (n ≥ 2) with 
(n − 1)-bit decoders, so that every n-bit decoder includes the simpler 
structure of a (n − 1)-bit decoder.  This iterative process produces both 
simple (One-way propagation, Osmotic propagation, Delayed 
propagation) and complex circuits (Adders, Memory, Decoders, 
Comparators).  Simulations have demonstrated the feasibility of such 
a combinatory logical circuit able to convert binary information from 
n input lines to a maximum of 2n unique output lines (Guo et al., 
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2014).  Multi-bit digital comparators allow not just the assessment of 
two multi-bit binary numbers one bit after another, but also the use 
of the Boolean terms 0 and 1 to describe the results.  In sum, quite 
simple basic units can be combined via special connection methods in 
network models that mimic the behavior of BZ concentric oscillations, 
making it possible to produce more elaborate computational 
functions.   

Entering the brain activity: lag threads. High-dimensional 
structures with variable delay termed “lag threads” have been found 
in the brain during spontaneous activity, consisting of multiple, highly 
reproducible temporal sequences that propagate from one brain region 
to another. Mitra et al. (2015) suggested that the brain activity 
encompasses both single and multiple lag threads.  We retrospectively 

evaluated video frames showing lag threads computed from real BOLD 
resting state rs-fMRI data.  Data were extracted from 688 subjects 
(Harvard-MGH Brain Genomics Superstruct Project).  We examined 54 
images from four sets of movies (Threads 1, 2, 3 and 4) including 
transverse sections of the brain.  The videos are freely-available: 
http://www.pnas.org/content/suppl/2015/03/24/1503960112.DC
Supplemental.   

Building the proper circuits.  The next step was to build a BZ-
like artificial circuit appropriate to describe real lag threads.  Instead 
of the usual neural models such as McCulloch-Pitts Neurons, Hopfield 
networks and so on (Hopfield 1982; Tozzi et al., 2016), we used a node-
like structure especially designed for simulation of both single lag 
threads and the superposition of multiple lag threads. This novel 
network, rather different from the adder units, decoders and 
comparators portrayed in previous papers (Zhang et al., 2012; Sun 
and Zhao, 2013), describes neuronal unities at different levels of 
observation, from the micro-to the macro-level.  Indeed, a BZ-like 
neural unit (provided with input and output channels) may stand both 
for a large cortical area and for a small group of neurons.    

To keep the model as simple as possible, the basic node-like 
structures (neuronal units) inspired by lag threads are rectangular 
ring channels equipped with input and output channels.  The circuit 
permits different paths according to the temporal sequence of signals 
propagation in real threads. The number of inputs and outputs mimics 
the number of threads: e.g., Figures 2B-C show two inputs and two 
outputs channels.   

To achieve the proper propagation sequence between nodes, we 
introduced one-way transmission structures:  

 

http://www.pnas.org/content/suppl/2015/03/24/1503960112.DCSupplemental
http://www.pnas.org/content/suppl/2015/03/24/1503960112.DCSupplemental
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where signals are unidirectional, e.g., they are allowed to travel just 
from left to right and not vice versa.  The addition of unidirectional 
transmission structures to input channels prevents signal output 
through the input channel.   

The very features of a basic BZ-like circuit suggest that two 
different paths may occur (Sun and Zhao, 2013):   

a) signal transmission from inputs to outputs (Figures 2B-C).  

b) signal annihilation when two front waves meet (Figure 2D).  

 

Figure 2. Comparison between travelling waves produced by chemical BZ and by one-
bit digital comparators.   Figure 1A: Two-dimensional BZ in a Petri dish.  The typical 
configuration of wave sources produces circular and spiral oscillations, as shown in 
these frames modified from: https://www.youtube.com/watch?v=jRQAndvF4sM.   
Note how the temporal evolution of the numerous chemical wave fronts leads to their 
merging, superimposition or annihilation.  Figure 1B-D: Three different possible 
patterns of wave propagation in basic one-bit digital comparators.  Figures 2B-C show 
how a single wave propagating from a single input channel (bottom) is able to reach a 
single output channel (top) after a wave bifurcation.  Figure 1D shows how two waves 
propagating from two different input channels are not able to reach the output 
channels, because their gathering leads to mutual annihilation.   

https://www.youtube.com/watch?v=jRQAndvF4sM
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Simulations of BZ-like concentric patterns on brain-like 

templates.  Once achieved a BZ-like network simulating lag threads, 
our aim was to assess whether the concentric oscillatory paths 
produced by our circuit could be superimposed with the real 
concentric oscillatory paths detectable in the video frames of BOLD 
resting state rs-fMRI activity. According to Mitra et al. (2015), each 
brain activity encompasses not just single, but also multiple lag 
threads. Our aim was to simulate the two threads shown in Figure 6 
from Mitra et al. (2015).  Both these two threads display four nodes, 
but the temporal order of their wave propagation is different.   

The basic unit, i.e., the rectangular-shaped channel with two 
inputs and two outputs channels, can be expanded via nesting and 
cascading processes to build multi-bit digital comparators.  We 

connected and combined several basic units to build the complex lag 
threads described in Figures 3A and 3B.  Figure 3A illustrates the 
circuit designed for the description of thread 1, consisting of four 
(neuronal) units and ad hoc connections among them.  The yellow 
arrows depict the direction of signal transmission.  The signal input 
starts from the left side of the node 1 and enters the node 1 through 
the unidirectional transmission structure designed to prevent the 
signal from the opposite direction to output through the input 
channel. When the signal propagates to the rectangular-shaped 
channel, it splits in two wave fronts. After passing through half a 
rectangle in different directions, their wave fronts meet at the opposite 
side, enter the gap into the T-shaped structure and continue to node 
2.  Summarizing, the input enters node 1, crosses nodes 2 and 3 and 
the output exits node 4.    

Figure 3B illustrates the circuit designed for thread 2, consisting 
of four neuronal units and the corresponding connections too.  The 
red arrows depict the direction of signal transmission. This time, the 
input enters node 4, crosses nodes 3 and 1 and the output exits node 
2.  It is noteworthy that the connection between nodes 1 and 2 is the 
same in the two threads, so that signals always propagate from node 
1 to 2.  The sequence that crosses the nodes 1 and 2 is termed “lag 
thread motif”.  

Mitra stated that the spontaneous activity of the brain is 
achieved through the superposition of multiple threads. Therefore, we 
produced a more intricate circuit encompassing multiple lag threads.  
Figure 3C illustrates two-threaded superposition (thread 1 and 2).  
The yellow and red arrows depict the direction of signal transmission 
in thread 1 and 2, respectively.  Note that the two signals stand for 
simultaneous inputs for two different channels.  Signal 1 from thread 
1 and signal 2 from thread 2 simultaneously reach the output 
channels in node 2 and node 3, respectively. Therefore, signal 1 
outputs node 4 after crossing node 3, while signal 2 outputs node 2 
after crossing node 1.  This is in touch with the observation that signal 
transmission is constrained in threads: for example, in the two threads 
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1 and 2 of Figure 3C, the node 1 is able to transmit signals just from 
left to right, while the node 4 is able to transmit signals both from left 
to right and right to left.   

In case of a single thread, the node-like structure is a unit with 
a single input and a single output; in a two-threaded superposition, 
the node-like structure is a unit with two inputs and two outputs; in 
a three-threaded superposition, the node like structure is a unit with 
three inputs and three outputs, and so on.  Increasing the number of 
threads, more complex structures are achieved that permit higher 
number of computations.   

BZ-like circuits generate synthetic oscillations that tend to 
propagate, converge, merge/annihilate and so on, giving rise to 
travelling waves that closely resemble the real oscillations detectable 
in the chemical BZ. The next step was to incorporate our synthetic 
oscillations in a template resembling the brain shape and anatomical 
structure in transverse projection. Using our BZ-like circuits, we 
generated random concentric wave fronts and projected them to the 
brain template (Figure 3D). We randomly generated simultaneous 
waves arising from different starting points inside the brain template 
to investigate their intersections and interactions.     

 

Results 

We found that the patterns of signal transmission in simulated BZ-
like travelling waves match the oscillatory patterns detectable in the 
spontaneous activity of the brain.  The experimental data from real 
BOLD resting state rs-fMRI data agree well with our simulated wave 
fronts, showing a good superimposition. The neural wave fronts closely 
resemble the BZ-like concentric circles embedded in the brain 
template. Indeed, matching features between the simulated and real 
oscillations were found in 85% of the 54 examined frames and in 65% 
of all detectable oscillations, independent of brain location and time 
window.   

Concerning interactions and superpositions between distinct 
oscillations, two different cases can be described both in real and 

simulated travelling waves:  

1) a single wave gives rise to a wave front that proceeds through 
the cortical areas. 2) Two waves cancel one each other when 
they start to merge and overlap.   

To provide an example of the case 1, the upper part of Figure 4A 
illustrates the signals of thread 3 from 0.4s to 1.1s, while the lower 
part of Figure 4A illustrates the corresponding artificial signals 
produced by BZ-like circuits.  The two travelling waves, the real and 
the simulated one, display the same progression throughout the brain 
template. To provide an example of the case 2, see Figure 4B, which 
illustrates two waves that annihilate when intersecting. 
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Figure 3.  The lag threads detectable in the spontaneous activity of the brain can be 
described in terms of BZ-like circuits.  Figures 3A-B illustrate simulations with four 
neuronal unities inspired by the lag threads described in the video frames of BOLD 
resting state rs-fMRI activity.  The arrows depict the direction of signal transmission 
from the input to the output. The numbers 1,2,3,4 designate four rectangular 
structures, each one standing for a neuronal unit.   Figure 3A.  Simulation of signal 
crossing in thread 1.   Figure 3B.  Simulation of signal crossing in thread 2.  Figure 
3C.  Simulation of two simultaneous signals crossing in threads 1 and 2.  The yellow 
arrows show the signals of thread 1, the red arrows the signals of thread 2. Figure 
3D.  Simulation of the temporal evolution of three simulated BZ-like concentric 
patterns inside a brain-like template. Modified from Mitra et al.’s movies.        
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Figure 4. Comparison between wave fronts from real lag thread frames (upper part) 
and from simulations with the novel BZ-like circuit (lower part).  The paths of the 
travelling waves can be easily detected and compared in both BZ simulations and real 
fMRI data.  Figure 4A illustrates the progression of a real and a simulated single wave, 
while Figure 4B illustrates the annihilation of two simultaneous waves.   
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 We found agreement between the waves produced by the 
spontaneous activity of the brain and the waves simulated by the novel 
network. This means that the diffusive paths detected in BOLD 
neuronal activity can be described in terms of BZ-like models and their 
master equations.   

 

Conclusions 

We found BZ-correlated dynamics in video frames of BOLD resting 
state rs-fMRI activity.  The matching of theoretical BZ models and real 
patterns of neural activity allows us to achieve two goals. The first goal 
is the possibility to reproduce and standardize neural waves 
propagation in order to investigate different cognitive activities.  To 

make use of video frames of BOLD resting state rs-fMRI activity as the 
domain of BZ, we began with two recently developed concepts:  

a) each brain activity encompasses single or multiple lag threads 
(Mitra et al., 2015);  

b) chemical signal processors based on the BZ platform are 
available (Zhang et al., 2012).   

To mimic both single lag threads and the superposition of 
multiple lag threads, we designed relatively simple BZ-like structures 
where random oscillations propagate through a small number of 
nodes.  We found that the oscillatory patterns of neuronal activity 
produced by simulations based on BZ fully overlap the oscillatory 
patterns detected in the brain during spontaneous activity.  Therefore, 
the behavior of BZ travelling waves is very similar to the behavior of 
brain travelling waves: this suggests that logical devices based on the 
space-time interaction of travelling excitation oscillations is well-
suited for experimental implementation in neuroscience (see also: 
Gomez-Molina et al., 2017).   

In this paper we assessed just coarse-grained macro-levels of 
observation and analysis: this led us to describe nodes at the level of 
cortical subareas equipped with inputs and outputs.  Nevertheless, if 
we consider micro-levels of observation and analysis, nodes might also 

stand, e.g., for single neurons or micro-columnar circuits.  A crucial 
question arises: is it feasible to generalize the description of nodes in 
BZ-like circuits, independent of the chosen coarse-graining? The 
answer is positive, because generalizations do not impair the broad 
description provided by threads.  Indeed, BZ-like reactions provide a 
good sketch of both single threads and their subsequent 
superposition.  In this paper we implemented just two-threads 
superpositions, while a more intricate superposition of multiple 
threads would require further exploration.   
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The matching of theoretical BZ models and real patterns of 
neural activity allows us also to achieve a second goal: to posit that 
the brain encompasses a recognizable diffusion pattern spreading 
throughout nervous structures.  Cincotti et al. (2019) brought a new 
level of complexity to BZ by combining multiple wave sources in a so-
called “threaded ring” configuration.  The order in the fluids is never 
perfect, because contaminations and impurities may affect the values 
of order parameters.  For example, a dust particle in the proper 
chemical medium may trigger spontaneous BZ waves consisting of 
concentric rings moving outward from the particle.  In other cases, 
circular BZ wave fronts perturbed by obstacles (see the movie: 
https://www.youtube.com/watch?v=jRQAndvF4sM) transform into 
spirals and/or scroll rings, i.e., ring-shaped sources emitting circular 

waves which propagate both inwardly and outwardly from the source.  
It is noteworthy that impurities are always local, which means that 
they are small and affect just limited spaces of the medium.  Peculiar 
local configurations termed vortices can be temporarily achieved when 
oscillations wind around a central point.  Because vortices might also 
stand for topological defects in the crystalline order of a medium 
(Beekman et al., 2017), this leads us into the field of superfluids and 
superconductors, where Kosterlitz-Thouless transitions (which 
describe ordered state at low temperature and completely disordered 
state at high temperature) are caused by topological defects in two-
dimensional manifolds (Kosterlitz and Thouless, 1973).  In neural 
terms, this means that each type of order (also the order of the brain 
activity) has its own type of topological defects, which presumably can 
undergo similar unbinding transitions caused by vortices.  In touch 
with these claims, Don et al. (2020) used computational topology on 
triangulated rs-fMRI videoframes to detect vortex structures covering 
activated regions of the brain.  During spontaneous activity of the 
brain, measure of persistence of vortex shapes was carried out in 
terms of Betti numbers that rise and fall over time (Don et al., 2020). 

To link up travelling neural oscillations to brain mechanisms of 
computations, virtues, defects and biological plausibility of our novel 
BZ-like network are here explained.  We proposed a BZ-like network 
producing concentric waves from random multifocal sources located 
in a two-dimensional manifold. Although centered on binary 
operations like most neural networks, our network simulates the 
progression of concentric waves and their superposition through an 
operation of binary addition.  In terms of biological counterparts, our 
model requires numerous nervous spots located in the central nervous 
system that spontaneously generate random oscillations propagating 
in concentric waves throughout the brain. When the oscillations 
produced by multifocal sources interact, they collide and merge, 
allowing us to achieve dynamics that are reproducible by BZ-like 
networks. Therefore, the main requirement for the biological 
plausibility of our model is the occurrence of spontaneous travelling 
waves in the brain.  Indeed, the brain cortex is crossed by scattered 

https://www.youtube.com/watch?v=jRQAndvF4sM
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spontaneous waves whose frequencies and speeds are consistent with 
slow conduction (Davis et al., 2020). It is well established that 
spontaneous travelling waves in the brain are endogenously generated 
and are not triggered by explicit tasks (Northoff 2018).  This “intrinsic” 
brain activity has been associated not just with resting-state or 
default-mode network (Tozzi et at. 2016), but also with disused 
circuits (Newbold et al., 2020) and increased target-evoked neuronal 
responses/perceptual sensitivity (Davis et al., 2020). Comparison 
between the oscillations produced by our model and the oscillations 
detected in fMRI traces suggests that the front waves of scattered 
spontaneous oscillations are circular and tend to propagate in 
concentric, expanding circles.   

Our model permits the assessment of front waves’ interactions: 
instead of investigating input features such as probability-weighted 
connections, activation functions, learning rates, thresholds and 
hidden layers, our BZ-like network focuses on the relationships 
between the various outputs, i.e., the concentric waves generated by 
point sources.   

The process looks like natural evolution, by selecting the “best” 
concentric wave and eliminating the relatively poor ones, so that a 
single output from a very few spots far outshines the rest.  Therefore, 
we suggest a winner-take-all approach, in touch with Pandemonium-
like architectures (Selfridge 1957). Spontaneously generated 
concentric waves subtend a hierarchical, self-improving model able to 
perform non-trivial binary functions (Tozzi and Peters, 2018). A 
Pandemonium-based architecture have been already proposed to 
elucidate not just cellular homeostasis (Liu et al., 2019), but also brain 
functions such as pattern recognition and mental interpretation of 
visual scenes (McDowell, 2010; Edelman, 2017).  Here we propose to 
extend Pandemonium-based architectures also to the spontaneous 
activity of the brain, so that, in touch with “neural darwinism” 
(Rosenbaum, 2014), the concentric scattered waves become a 
selection system.  The waves interaction described by our model might 
help explain a puzzling finding.  It has been uncovered that neurons 
coordinate the strength of their excitatory and inhibitory inputs to 
establish and maintain a constant excitation/inhibition (E/I) ratio.  
E/I ratio is thought to be essential for circuit function and stability 
(Xue et al., 2014; Sengupta 2013; Sengupta 2014; He and Cline, 2019) 
and is rather stable at different magnifications (He et al., 2018).  E/I 
ratio stability can be exposed as various coarse-grained levels of 
analysis, such as individual pyramidal neurons in vitro and in vivo 
(Haider et al., 2006), ensemble of multiple cortical neurons (Xue et al., 
2014) neural avalanches (Lombardi et a., 2012), circuit assembly, 
intact and spontaneously active cerebral cortex. How a balance of 
excitatory to inhibitory inputs is established and subsequently 
maintained remains a matter of debate (He and Cline, 2019). To 
provide an example, Xue et al. (2014) suggested that optimal E/I ratio 
across neurons is maintained, despite fluctuating cortical activity 
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levels, due to strengthening or weakening of synapses (Xue et al., 
2014).  Our model suggests that the E/I ratio could be controlled 
(among other factors) by oscillations’ collisions: when wave fronts 
interact, their merging gives rise to annihilation and intensification 
that provide a natural balance between excitatory and inhibitory 
inputs.   

BZ-like circuits stand for an approach to neural networks 
different from the standard ones.  The combination of the elementary 
modules, i.e., binary adder unit, allow the achievement of both series 
and parallel processing.  Because of the intricate nature of excitable 
mediums and the high dependency on synchronized inputs both in 
chemical and in nervous settings, BZ-like networks require careful 
control of signals timing to achieve binary addition.  Indeed, one of the 
main troubles with our model is time representation, since the human 
brain encompasses waves with different speeds, taking longer or 
shorter times to reach a target area.  The same occurs inside the 
neural fibers of different diameter and diverse myelination.  In our 
model, due to the scarce homogeneity of the connections between 
nodes, it takes different time for signals to pass through one node to 
another. To overcome the difficulty and achieve the required 
synchronous binary addition, a slight change in the channel length 
could be required.  Since the signals are transmitted throughout the 
channels at the same speed, the lag time can be monitored and 
modified in two ways:  

a) either by changing the channel length between nodes:   

 

b) or, since the speed of the signal slows down as it passes 
through the gap, by modifying the lag time with the addition of several 

channel gaps:    

When examining the very concept of lag thread, the term “lag” is 
a key innovation point, suggesting that it is worth to be incorporated 
in artificial nervous circuits.  However, is it feasible to weight threads? 
The suggestion of Mitra et al. (2015) that different threads occupy 
different weights in brain activities is difficult to describe in the context 
of BZ-like approaches.  For example, suppose that the weight of thread 
1 is higher than the weight of thread 2.  When simultaneous signals 
in thread 1 and 2 cross the structure, the signal 1 will obliterate the 
signal 2.  This means that a functionally significant weight difference 
between distinct threads occurs.  In turn, if the sole signal 2 crosses 
the circuit, it is left undisturbed.  Further studies are required to 
design the proper structure able to treat differently signals coming 
from diverse threads.   
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Our network allows to appraise nonlinear dynamics in the plain 
terms of superimposing waves. In touch with our model, it is 
noteworthy that fluctuations of cortical activity are neither purely 
synchronous, nor spatially disorganized noise processes (Davis et al., 
2020).  The matching of theoretical BZ models and real patterns of 
neural activity suggests that the occurrence of chaotic, non-linear 
activity during brain activity is correlated with peculiar topological and 
geometrical arrangements of the subtending neural circuits. BZ 
models for neural activity predict that the subtle balance between 
concentric oscillations produces nonlinear chaotic patterns of wave 
propagation.  In touch with the BZ framework, the brain has been 
described as a complex, non-linear system operating at the edge of 
chaos, characterized by inter-dependent components, spontaneous 
self-organization and emergent properties (Tognoli and Kelso, 2013; 
Yan et al., 2013; Xu and Wang, 2014; Kim and Lim 2015).  Funnel-
like locations in nervous phase spaces converge towards the shortest 
path as time progresses (Watanabe et al., 2013; Tozzi et al., 2016; 
Sengupta et al., 2016; Wang et al., 2017). Distinct nonlinear functional 
regimes have been described both in the central nervous system and 
in artificial neural networks (Deco and Jirsa, 2012; Touboul 2012; 
Afraimovich et al., 2013). In agreement with brain dynamics, the 
solutions of BZ equations describe a wide range of nonlinear 
behaviors, including the formation of travelling waves and attractor-
like phenomena, as well as self-organized patterns.  BZ-like network 
models are relatively straightforward since they are equipped with 
simple logical devices such as Boolean gates, adders, counters, 
memory cells.  Apart from the lengths of the channels and the proper 
arrangement of nodes and edges, no other adjustments, such as phase 
parameters or fine-tuning, is required by our network.  This suggests 
that the emergence of nonlinear dynamics could be strictly correlated 
with the geometric and topological arrangement of the channels where 
wave propagation takes place.  In the description of nonlinear neural 
issues, wave bifurcations might stand for phase transitions, while BZ 
dynamics might replace Hopfield networks and/or Hodgkin-
Huxley/reaction diffusion models (Hopfield 1982; Yang and Wu, 
2018).  Therefore, the key to understand chaotic dynamics might lie 
in the constrained shapes of circuits, nodes and edges that provide the 

very arrangement of physical/biological networks.  Paraphrasing the 
adage that the function creates the organ, our BZ-like model suggests 
that in a neural network the arrangement creates the function.   
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